
AD-A259 806

DTIC
ELECTE

Final Report* FEB 4 1993Dfor C[•

Grant No. N00014-87-K-0796

Design and Analysis of Scheduling Policies for
Real-Time Computer Systems

J.F. Kurose, C. M. Krishna, D. Towsley

- University of Massachusetts
Amherst, MA 01003

kurose@cs.umass .edu, krishna@ecs.umass.edu, towsley@cs.umass.edu

*APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED.

93 2 3 93-02000
1 II *"""ll\R%

1 Introduction

Our research funded under ONR contract N00014-87-K-0796 can be broadly divided into five areas:

1. design and analysis of deadline based scheduling policies,

2. design and evaluation of high performance and fault tolerant disk architectures for real-time
systems,

3. design and evaluation of scheduling policies for real-time tasks with incremental-value-with-
increased-execution-time characteristics,

4. reliability and testing of real-time systems,

5. scheduling for real-time parallel processing systems.

These topics will be the subject of the remainder of the technical section. Additional details of our
work can be found in the cited technical papers and reports.

2 Deadline Based Scheduling

In soft real-time computer and communication systems, temporal constraints are placed on the
behavior of the jobs (e.g., processes or messages) within these systems. Typically, these constraints
require that these jobs initiate or complete some task (e.g., a process' computation or a message's
transmission) within some deadline. In such soft real-time systems, the performance metric of
interest is no longer one of the traditional measures, such as average delay or throughput, but
rather, the fraction of jobs which are not able to meet their specified time constraints (i.e., the

fraction of jobs that are lost.)

One of our primary goals during this last year was to understand the behavior of two scheduling
policies in such a system with deadlines: the minimum laxity policy (ML) and earliest deadline
policy (ED). In the ML policy, deadlines are to the beginning of service; in the ED policy, deadlines
are to the end of service. Both policies schedule that job whose deadline is closest to expiring. In
the following subsections, we overview the results that we have obtained regarding the optimality
(in terms of minimizing loss) of these policies and then describe two approaches for modeling their
performance.

2.1 Optimality of the ML and ED Policies

We have been able to establish the following optimality property of the ML and ED policies on
a multiprocessor executing a stream of jobs with arbitrary arrival times and deadlines. Assuming e4 ad
that job service times are exponentially distributed, we established that over the entire class of -
non-idling scheduling policies, both the ML and ED policies maximize the fraction of jobs that . ,,
meet their time constraints.

DTIC QUALITY INSPECTED 3

Avall2abllit Co

Dist Specia'l

W\ L JI

These results hold both for the case that an unlimited number of jobs can reside in the system
and for the case that a maximum of B jobs can reside in the system at any one time. In such systems,
the "scheduling" policy must also determine which job should be removed from the system whenever
it is full and a new job arrives. We have shown that the policy that removes the job closest to
its deadline, coupled with the ML or ED policy for scheduling jobs, maximizes the fraction of jobs
that make their deadlines under the same assumptions as above. Details of these results may be
found in (26]. We note that these results are particularly powerful as they establish the optimality
of two specific scheduling disciplines over a large class of possible real-time scheduling disciplines.

We have also obtained similar results for the case that deadlines are not precisely known but a
"stochastic ordering" exists among the deadlines of all jobs in the system. Details of these results
may be found in [26].

We have also treated systems in which customers are not removed when they miss a deadline.
See [7] for details.

2.2 Bounds on the Performance of the ML and ED Policies

In addition to studying the optimality properties of the ML and ED policies, we also considered two
approaches towards evaluating their performance. In our first approach, we developed a Markovian
model that describes the behavior of ML on a multiprocessor under the assumptions of Poisson
arrivals and exponentially distributed service times and deadlines. A similar model was developed
for the ED policy for a single processor system under identical assumptions. Unfortunately, an
ezact analysis of this model is computationally intractable (from a practical standpoint). However,
we were able to develop tractable models which produce upper and lower bounds on the fraction of
jobs lost. These bounds can be made arbitrarily tight at the cost of additional computation. The
results of this analysis can be found in [12].

The Markov model underlying these bounds is based on a new binary simulation of the ML
and ED policies. This simulation can be found in [11] and can be used to develop models for ML
and ED scheduling for the cases in which the service times are generally distributed, or the arrival
times are generally distributed.

2.3 Exact Analysis of the ML Policy

The performance analysis described in the previous section was approximate and required exponen-
tial assumptions for the interarrival times, service time, and deadline distributions. We have also
developed a computational algorithm for ezactly computing customer loss under less restrictive as-
sumptions, provided the system can be modeled as a discrete time queueing system. Such a model
would be appropriate in communication networks and computer systems in which event timings
occur in discrete units of time (e.g., any time-division-multiplexed communication link/network or
computer system in which job execution times and interarrival times are multiples of some minimum
time quantum).

Specifically, we considered a discrete-time queueing system in which the deadline associated
with each customer (the amount of time from a customer's arrival until the time at which it must

3

begin service) is bounded by some maximum possible value, M time units.. Customers in the queue
are scheduled according to the ML policy, and a customer whose deadline expires is considered lost
and is removed from the queue without receiving service. We have been able to exactly analyze
the case of geometrically distributed service times and a bulk arrival process in which the number
of customers arriving in a slot with a deadline of i slots is also geometrically distributed (for each
i, 1 < i < M); we have also demonstrated how this model can be extended to include generally
distributed service times and laxities as well. The main result of this work has thus been the
development of a numerical algorithm which exactly computes customer loss for this queueing

system with a time complexity of O(M 4). Details of this work can be found in [171.

2.4 Approximate ML and ED policies

One potential drawback of ML scheduling is that the identity of the job with the closest deadline
(minimum laxity) must be determined at each scheduling point - a potentially expensive run-time
cost, especially when the number of queued jobs is large. For example, if jobs are maintained in a
list structure, finding the minimum laxity job in a non-laxity-ordered list or maintaining a sorted
list according to laxity are both 0(n), when there are n jobs queued; if a dictionary-like structure
is used to queue jobs, the time to maintain the data structure is O(ln(n)).

We developed a policy ML(n) [12] that approximates the behavior of ML in the following way.
This policy divides the overall queue into two queues, Q1 and Q2, where Q1 can hold at most n
jobs. If the total number of jobs waiting for service is less than or equal to n, they are all held in
Q1. Jobs in Q1 are scheduled according to ML. However, if the number of jobs exceeds n, then
an arriving job is unconditionally placed into Q2. At a service completion instant, the job with
minimum laxity among all jobs queued in Q1 is scheduled for service. When the scheduler moves
a job from Q1 to the server, it also moves a job from Q2 to Q1, selecting the job to enter Q1
on an FCFS basis. In summary then, Q1 is an ML queue of size n and Q2 is an FIFO queue of
unbounded size and Q2 feeds Q1. Note that ML(1) is same as FCFS and ML(oo) is equivalent to
exact ML.

In [20] we compared this policy with a variant, first presented in [29] which reverses the positions
of Q1 and Q2, i.e., the ML portion of the queue, Q1, feeds the FIFO portion of the queue, Q2. We
showed that these two seemingly dissimilar policies always make the same scheduling decisions at
the same time.

In [101, we consider four variants of the ML(n) policy that approximate the behavior of ML
scheduling and continue to enjoy the advantage of having a run-time cost which is independent of
the number of queued customers. Our simulation results show that the best of the four policies
provides 20-25% improvement over ML(n) and performs within 5% of the exact ML policy over a
wide range of traffic loads and laxity distributions. This policy differs from ML(n) in the following
manner. At arrival, if there are n or more jobs in the system, the laxity of the new arrival is
compared to the laxity of the job with the mazimum laxity among the n jobs in Q1. If the laxity
of the new arrival is greater, the new arrival is placed at the end of Q2; otherwise, the new arrival
is placed in the position of the job with maximum laxity among the jobs in Q1, and the job with
maximum laxity in QI is placed at the end of Q2.

4

Details of the other policies and their performance evaluation can be found in [10].

3 High Performance and Fault Tolerant Real-Time I/O Systems

Throughout our contract, we have concerned ourselves with the development of real-time fault
tolerant high performance I/0 systems.

3.1 Scheduling policies for real-time disks

We developed and evaluated the performance of two new disk scheduling algorithms for real-time
systems. These algorithms, called SSEDO(for Shortest Seek and Earliest Deadline by Ordering)

and SSEDV(for Shortest Seek and Earliest Deadline by Value), combine deadline information and
disk service time information in different ways. The basic idea behind these new algorithms is
to give the disk I/O request with the earliest deadline a high priority; but if a request with a
larger deadline is "very" close to the current disk arm position, then it may be assigned the highest
priority. The performance of SSEDO and SSEDV algorithms is compared with three other proposed
real-time disk scheduling algorithms, ED, P-SCAN, and FD-SCAN, as well as four conventional
algorithms, SSTF, SCAN, C-SCAN, and FCFS. An important aspect of the performance study is
that the evaluation is not done in isolation with respect to the disk, but as part of an integrated
collection of protocols necessary to support a real-time transaction system. The transaction system
model was validated on an actual real-time transaction system testbed, called RT-CARAT. The
performance measures of interest are the transaction loss probability and the average response
time for the committed transactions under different I/O scheduling algorithms. The results show
that SSEDV outperforms SSEDO; that both of these new algorithms can improve performance
of up to 38% over previously-known real-time disk scheduling algorithms; and that all of these
real-time scheduling algorithms are significantly better than non-real-time algorithms in the sense
of minimizing the transaction loss ratio. Details of this study can be found in [3].

Although the performance evaluation was done in the context of a transaction processing system,
the policies can be used in any real-time setting and the relative rankings of all of the policies studied
should not be effected.

3.2 Fault tolerant disk systems

We developed and evaluated the performance of a number of scheduling algorithms for a pair of
disks where copies of each data item are maintained on each disk. We considered two classes of
policies, i) centralized queue policies (CQP's) and ii) distributed queue policies (DQP's). A CQP
maintains a central queue of all requests that require servicing by the mirrored disks. In addition,
a second, auxiliary queue may form from time to time at the disk that lags behind. When a disk
becomes available, a request is scheduled to it from the central queue according to some policy. If
the request is a read, then it is served by this disk. If it is an update, then in addition to being
served by the available disk, it is also entered into the auxiliary queue associated with the second
disk. Last, requests are scheduled from the auxiliary disk according to some policy.

5

A DQP maintains a separate queue at each disk. A read request is assigned to one of these
disks according to some routing rule, whereas an update generates write requests at both disks.
Requests are scheduled at each queue according to some scheduling policy. Last, whenever a read
arrives to find both disks idle, it is routed to the one that will provide the shortest seek time.

Our studies have focussed on the choice of scheduling policies at the queues and the choice of
routing policy in the class of DQP's. We have concluded that the best performance (i.e., smallest

fraction of jobs missing their deadlines) is obtained with a DQP which uses a join the shortest queue

routing policy for reads and the SSEDO (shortest seek and earliest deadline by ordering) policy at
each of the queues. Details of this work can be found in [4, 24]; see also [3] for details on SSEDO.

3.3 Disk arrays

Our work in this area has focussed on developing and evaluating the performance of different data
layout schemes and scheduling policies for two proposed disk array architectures, the mirrored array
and rotated parity array.

In bcth cases, the system consists of N disks. The mirrored array ensures that there are two
copies of each file, whereas the rotated parity array provides a parity block for fault tolerance for
every N - 1 data blocks.

In the case of the mirrored array, we proposed several data allocation schemes and schedul-
ing policies We compared their performance in the case that all disks are operational (normal
mode) under two workloads: i) applications in which I/O requests are for small amounts of data
(e.g., transaction processing, workstation), and ii) applications in which I/O requests are for large

amounts of data (e.g., supercomputing, image processing). The main results is that in the normal
mode of operation, a newly-proposed group-rotate declustering allocation, coupled with a policy
that assigns read requests to the disk containing the data with the shortest queue, provides the
lowest mean response time of all of the combinations that we considered. This is true for both
types of applications described above.

In the case of the rotated parity array, we compared the performance of the traditional RAID

5 layout where fies are interleaved across the disks, with the parity striping layout, where each
file is stored on a single disk. We also studied two synchronized I/O scheduling policies suitable
for both layouts, which take care of this problem. These two policies provide practical solutions
to the problem of providing write synchronization in rotated parity arrays. We provided accurate
mathematical models for estimating the mean I/O response times and the maximum throughput
of both layouts, coupled with these two synchronized scheduling policies. Using these models,
we compared the performance of the two layouts with each other. The results show that the
performance of RAID 5 (with relative small striping unit of 4K bytes) is sensitive to the increase
of mean request size but not to the skew in the access pattern. On the other hand, the parity
striping layout is sensitive to skew in the access pattern. Therefore, depending on applications,
RAID 5 outperforms parity striping in some cases, but is outperformed by parity striping in other
cases. We identify workloads for which each layout provides the best performance. This allows the
designer the ability to choose between them for their applications.

Last, we compared the two arrays with each other and observed that the mirrored array archi-

6

tecture significantly outperforms the rotated parity array architecture when applications generate
I/O requests for small amounts of data. This is true for the case that both architectures have the
same number of disks as well as when they have the same storage capacity. In the case of appli-
cations that generate I/O requests for large amounts of data, the results are not as clear. RAID
5 performs better when most requests are very large, most requests are writes, and most writes
perform full stripe writes.

Similar results have been obtained in the case of soft real-time workloads. Details of this and
the above work can be found in [5, 6, 25].

4 Scheduling Real-Time Tasks with Incremental Reward Char-
acteristics

Many real-time systems can be modeled by a single server system in which jobs arrive (according
to a certain distribution) and remain in the system for a certain amount of time before departing.
The longer you serve a job (while it is present in the system) the more profit you make on the job.
In typical problems (such as in Artificial Intelligence) the profit curves are concave [2].

In this work, we considered the problem of scheduling jobs whose arrivals are described by an
arbitrary stochastic process. We assume that job i has a lifetime of 7i and a profit curve fi(zi)
which is an increasing concave function of z, the received service.

The objective is to schedule the jobs to maximize the profit per unit time. We refer to the
lifetime ri of job i as its initial lazity. At any time t, let a job be present in the system with
deadline d (d > t). The remaining time until the job leaves the system is referred to as the lazity
(as opposed to initial lazity) of the job. Thus, at time t the laxity of a job with deadline d is
I= d-t.

We have formulated and solved a static optimization problem where we assume the presence at
time t = 0 of N jobs with distinct deadlines and profit functions for the case of no future arrivals. In
the case of arbitrary concave profit functions, the optimal schedule can be obtained with an amount
of computation that is O(N 2). If we assume that the profit curve is of the form fi(z) = 1 - e- ,
then the complexity is reduced to 0(N log N). We have developed an algorithm that accounts for
arrivals, by executing this static policy at each arrival epoch and using the associated schedule until
the following arrival. As this heuristic does not produce a unique schedule to be used during this
period, we have considered the following heuristics.

1. Shortest Service - In any given interval, service the job with the least service so far.

2. Earliest Deadline (ED) - In any given interval, service the job with the closest deadline.

3. Random Selection - In any given interval, service a job randomly.

We have compared these different heuristics to each other, to simple first-come-first-serve and
last-come-first-serve policies,and to simple upper bounds in the case that two different classes of
customers are being served. Here, customers from different classes differ in their profit function and

7

laxity distributions. We find that the simple ED policy, in combination with the static optimization
algorithm, performs the best and achieves a performance close to the unachievable upper bound in
most cases.

These algorithms are likely to be of importance in many real-time applications which involve
successive approximations or search procedures [2, 8, 9, 19].

5 Reliability and Testing

5.1 Reliability Modeling of Real-Time Systems with Transient and Correlated
Failures

Real-time systems can fail not just because of spontaneously-occurring failures, but also because
of events, such as a burst of electromagnetic or elementary-particle radiation. Such environmental
upsets can cause both transient and permanent failure. Since the entire system is bathed in the
same environment, such failures can be correlated. However, despite the occurrence of correlated
failures, contemporary reliability models have largely ignored them, assuming instead that failures
are independent.

Our work on developing the mathematical underpinnings of a model which accounts for both
correlated and independently-occurring failure has been described in an earlier report. Over the
past year, we have completed work on the first version of a software package which implements this
earlier research.

The package, written in C, considers only processor failures: the failure of the software, the I/O
components, etc., is not considered. Our future work will extend it to include these factors.

The package accepts as input the number of processors, the inter-checkpointing interval, the
spontaneous permanent and transient failure rates of processors, the critical workload schedule of
each processor, and the characteristics of the operating environment. The latter is represented by
the transition rates of the environment between a variety of states. Each of the environmental
states represents some degree of stress imposed by the environment on the computer system, and
thus represents a given increase in the permanent or transient failure rates. The package allows the
system to be heterogeneous, i.e., the failure rates and susceptibility to the operating environment
can vary from processor to processor. The program output is the probability that the critical
workload is executed on time throughout a specified interval of operation.

The features of this package which distinguish it from others is that (i) correlated failures and
(ii) the periodic critical workload schedule are taken into account. It can be used, for example, to

evaluate the performance of different task schedules (including staggered schedules) and the effects
of shielding against the effects of the environment.

5.2 Scheduling Tasks on Real-Time Systems Subject to Correlated Failure

In this part of the work, we studied real-time systems operating in hostile environments [151. We
have obtained a heuristic to carry out scheduling of tasks on real-time systems that are subject to
correlated transient failure. The tasks have cost functions associated with them. That is, c(t) is

8

the cost of having a response time t for an iteration of task i. These functions relate the cost to the
controlled process of the response time of the various tasks. The objective is to minimize the total
cost and maximize the available time redundancy (required to defeat correlated transient failure),
subject to the requirement that all deadlines be met. Since this problem is clearly NP-hard, we
have focussed on developing a heuristic. The heuristic is in two parts.

At each decision point (when a new task becomes available or a currently-executing task com-
pletes), the system has to determine which of the available tasks must be run. To obtain a minimum-
cost schedule would require us to generate a search tree of as many levels as there are tasks, and
exhaustively evaluate it. This, however, is very expensive, and so only a subset of the entire set
of available tasks must be considered. To determine which tasks are to be in this set (called the
lookahead set), we use the following procedure for the first part of the heuristic.

From the set of tasks that are available for dispatch at decision time t (called the current set,
C(t)), choose the task, i, which is most expensive to execute last (i.e., after all the other tasks in
C(t)). Find the slope of the cost function of task i both at time t as well as at the time when all
the other tasks in C(t) finish. Call these slopes sil and si2, respectively. Include in the lookahead
set task i, as well as those tasks in C(t) whose cost functions at time t have slopes greater than

min{ail, Si2}. This lookahead set is then searched exhaustively to determine which task should be
dispatched.

Note that the above actions only check the slope of the cost function for task i at two time
instants. Since cost functions can be highly nonlinear, this can lead to anomalies. The second
part of the heuristic, called the compaction step, attempts to correct these anomalies. Compaction
starts with the schedule for the entire task set, obtained as described above. The last task is deleted
from the task set, and a new schedule is obtained for the rest of the task set. This last task is then
inserted in the first unused miniframes during which the task is available. Note that the generation
of the new schedule is done recursively, with the last task in each schedule being deleted from the
entire task set at each point until no tasks remain, and then the schedule is gradually built up by
reinserting the deleted tasks as specified above.

We have run extensive simulations to compare the quality of the schedules generated by this
algorithm against those of the optimal algorithm (using exhaustive enumeration). In the vast
majority of cases, our algorithm produces schedules whose costs are within 5% of the optimal.

So far, we have said nothing about maximizing the time redundancy, i.e., the amount of slack
in the schedule after all the critical tasks have been inserted. To do this, we proceed as follows.
Suppose there are 2m + 1 copies of each task that have to be run. Then, we first schedule only
m + 1 copies of each task. Following this, we add to the schedule an (m + 1 + i)'th copy of each
task, and place it in the schedule appropriately, for i = 1, 2, ..., m. In every case, the placement of
the (m + k)'th copy of each critical task is done prior to the introduction into the schedule of the
(m + 1)'th copy for I > k, and the positioning of the (m + k)'th copy of any task is unaffected by
the positioning of the (m + 1)'th copy of any other task except insofar as may be required to meet
the deadlines of all the tasks.

This results in the tasks being staggered in such a way that the (m + k)'th copy of each task
is completed before the (m + 1)'th copy of the same task (for I > k > 1). As a result, whenever a

9

total of m + 1 identical outputs are produced by the first m + 1 correctly functioning copies of a
task, the rest of the copies can be dispensed with, thus generating additional slack in the schedule.

5.3 Impact of Workload on the Reliability of Real-Time Systems

Most real-time systems employ N-modular - most commonly triple-modular - redundancy for fault-
tolerance. When a processor in a triad fails permanently, a spare processor (if available) must be

switched in to take its place. If the failure is transient, the affected processor will be brought back
into the triad after it recovers.

In either case, it is necessary to make the memory of all three members of the triad consistent.
Thi.. can be done by copying into the recovering or substitute processor the writeable memory of
the two processors that are still functional. The time required for this can depend on the workload,
and the rate at which this workload writes into its memory.

Until the processor has recovered, is resynchronized with its colleagues in the triad, and resumes
normal operation, the triad is effectively a duplex and will suffer fatal failure if one more of its
processors fails.

In this work, we have modeled the impact of workload on the recovery time, and therefore on
the reliability, of processor triads. We have shown that there is a knee above which the allocation
of more tasks to processors increases the fatal failure rate dramatically. Our current work deals
with the implications of this fact on the allocation of tasks to real-time systems. Details can be
found in [16].

5.4 Distributed Recovery Algorithms for Distributed Systems

One component in our initial proposal was the development and performance evaluation of dis-
tributed algorithms for recovering from faults in a distributed real-time computer system. Briefly,
the algorithm that we proposed requires that a node, henceforth referred to as the primary node,
transmit one or more copies of a job at the time of its arrival to other nodes, referred to as secondary
nodes, in the system. The secondary nodes are responsible for monitoring the primary node for

failure. If a failure occurs before the job completes, the secondary nodes select one of them to be
the new primary node responsible for completion of the job.

Tl' -re are many interesting variations of this basic policy, and thus our first task was to develop
a simple analytical model which can be used to study the performance of these variations. We
have chosen an approach whereby we decompose the system of N nodes into N models, one for
each node in the system. The interactions between these nodes are captured by the values of the
input parameters of each of these models. As these parameter values are unknown, this yields a
fixed point problem, i.e., a set of nonlinear equations with these parameters as unknowns. We have
developed a detailed model for a single node which can be used in such an approximate evaluation;
our model accounts for the effects of node failures and the communication costs of transferring job
copies from the primary node to the secondary nodes. The details of this model and its analysis
can be found in [27].

10

5.5 Scheduling Tests of Software for Real-Time Systems

The reliability of real-time systems depends greatly on the reliability of the applications and systems
software that is run on it. Two approaches to reliable software have been proposed in the literature.
The first approach, called the recovery block approach, deals with using a primary version and a
secondary (or backup) version. There is an acceptance test whose function is to determine whether
or not the output is likely to be correct. The acceptance test is not perfect: it is assumed to have
a probability of c < 1 of detecting an erroneous output. c is called the coverage. If the primary is
judged to have produced an erroneous result, the secondary is invoked.

The second approach, known as N-version programming, is a software analogue of N-modular
redundancy. N versions of the software are independently produced and run in parallel. The results
of the software are voted as in N-modular redundancy.

In this work, we provide a simple reliability model for N-version programming and the recovery
block scheme which can provide guidance for the quasi-optimal allocation of software debug time
among the different versions [28].

We assume that the software error generation rate is a Weibull function of the debug time t,
i.e.,

\(t) = \o e-("0

where p and a are constants that characterize the software being debugged, and A0 is the initial
failure rate of the software. The Weibull distribution was chosen because of its generality. Note
particularly that the popular exponential distribution is a special case of the Weibull.

We have obtained expressions for the Mean Time to Failure (MTTF) of both schemes as a
function of the debug time of the various modules. In particular, our results show that when the
coverage of the acceptance test in the recovery-block approach is imperfect (i.e., c < 1), most of the
debug time should be spent on the primary. Indeed, the share of the debug time allocated to the
primary tends to increase as the coverage decreases. The expression for the MTTF of N-version
programming is too complex to maximize analytically: instead we show how to use numerical
techniques to allocate the debug time optimally.

5.6 Optimal Scheduling of Signature Analysis Tests

A second effort in the area of reliability has studied methods to optimally schedule tests in real-time
systems. Fault-tolerant systems need to undertake regular and mutual testing to flush out latent
faults and reconfigure the system in response. The use of signature analysis as a testing procedure
has gained rapidly in popularity over the last few years. Signature analysis consists of applying a
sequence of test inputs to the device under test, and compressing the outputs. This compressed
output is then compared against a reference. Any discrepancies would indicate a faulty device.

The convention is to apply the entire test sequence to the device and then - Jmpare it against
the reference. However, if a fault is uncovered early, the rest of the test can be dispensed with,
thus saving time. It therefore makes sense to embed additional comparisons against the reference,
i.e., to break the sequence of tests down into subsequences. At the end of each subsequence, if

11

any faults have been uncovered, the testing stops since the device under test is faulty and must be
purged; otherwise, the next subsequence (if one is available) is applied.

Our accomplishment has been to obtain an algorithm which breaks the test sequence down
into a set of subsequences so that the expected testing time per device is minimized. Our work
is thus likely to reduce the testing overhead in operational real-time systems. Over the past year,
we have tested this algorithm on the benchmark circuits of Brglex, et al., and showed its practical
usefulness. The inputs to our algorithm are: the probability that the device under test is faulty, the
coverage function of the test sequence, and the overhead consumed in applying tests to comparing
thie tet outputs against the corresponding response. This work is described in detail in [18]. We
plan to extend this work to include board-level diagnosis. This will involve incorporating search
algorithms in our work to locate a test input out of the whole sequence that exercises this fault.

5.7 Optimizing Wafer-Probe Testing

The VLSI chips that make up highly-reliable systems must be thoroughly tested during manufacture
to ensure that defect levelsi are suitably low. Unfortunately, exhaustive testing is out of the
question and even the best testing procedure is imperfect; that is, failed chips can pass the test
and be incorporated into a product.

Thus, it is always of interest to (i) optimize the test effort required to achieve a given defect

level, and (ii) to achieve the lowest possible defect levels given the best available (imperfect) testing
procedure. In this work, we have developed a novel approach for improving the effectiveness of
wafer-test procedures by obtaining and using yield estimates for individual dies on the wafer before
the wafer is diced.

Our approach is based on the observation that defects on a wafer are not uniformly distributed,
but have long been known to exhibit clustering. Most of the good dies on a wafer are found adjacent
to other good dies, while defective dies tend to be similarly clustered. This suggests that if we know
the state of some or all of the neighbors of a given die, we can obtain a better estimate of :ts yield.
We have shown how to use this improved yield estimate to optimize the test applied to the die. We
have calculated that in typical cases, we can better manage the test process to obtain, for the same
testing time, a halving of defect levels, and that we can identify dies whose defect level is about 20
times less than for the overall lot.

6 Parallel Systems

As part of our research, we designed and evaluated the performance of scheduling policies for
parallel systems executing jobs with real-time constraints. We have focused on two aspects of this
problem:

9 The analysis of priority scheduling policies for multiprocessors executing parallel applications.

* The determination of optimal scheduling policies for (both real-time and non-real-time) par-
allel processing systems executing parallel applications.

'The defect level is the ratio of bad chips which pass the test to all the chips that pass the test.

12

6.1 Priority Policies for Multiprocessors

We have developed simple models for a multiprocessor which executes a stream nf K cls.es -,f
jobs, each of which consists of a random number of tasks that can be executed independently of
each other; we refer to such jobs as a fork-join jobs. Several priority scheduling policies have been

analyzed: a) a strict non-preemptive head of the line policy, b) a preemptive policy that allows

preemptions at the job level, c) a preemptive policy that allows preemptions at the task level, and

d) a policy where the priority is a non-decreasing function of the number of tasks in the queue with
preemptions at the job level. Using these models, we have compared the mean job response time
for the different classes under the various scheduling policies and under FCFS scheduling. We have
also compared the performance of these policies to that of a system in which the processors are
partitioned so that classes are allocated only to certain processor groups. Our results have shown

that for the system considered, the task preemption policy has a uniformly better class response
time and thus is preferable to a system with partitioned processors. Details of this study will be

available in a forthcoming report [22].

We are also now completing a related study of the behavior of the first-come-first-serve schedul-

ing policy for fork-join jobs on a multiprocessor. Our results here have included a characterization
of the response time distribution under Markovian assumptions, development of computationally
efficient upper and lower bounds for the moments of the response time, a proof that FCFS is the
policy that minimizes (and last-come-first-serve (LCFS) maximizes) the expected value of a convex

function of the response time. This last property has the implication that FCFS minimizes (and

LCFS maximizes) any moment of the response time distribution. From a practical standpoint, this

means that LCFS maximizes the fraction of jobs that complete within their deadline in a real-time
system in which all jobs eventually receive service (whether or not they miss their deadlines) under

a general set of assumptions. Details of this study can be found in [21]. We note once again that

we believe this is a strong result as it establishes the optimality of LCFS over a broad range of
possible scheduling disciplines.

6.2 Optimality Results

We also completed a study of the effects of scheduling disciplines on the performance of parallel
systems (both with and without real-time constraints). A job is composed of a set of tasks, with a

partial order specifying the precedence constraints between the tasks. We assume that a predefined

mapping of the tasks to processors has been given and that the processors execute a stream of
jobs, all with the same task graph and task/processor allocation. Our goal is to study the effects of

different local scheduling policies at each of the processors on the job throughput, number of jobs
in the system, and the job response time.

We have been able to establish several important results. First, we have been able to show

that the FCFS policy applied at the task level minimizes the number of jobs in the system and
maximizes the throughput. Second, we have also established that FCFS minimizes the expected
value of any convex function of the response time. In the case that jobs have soft real-time deadlines
and are completed regardless of whether they make their deadlines, we have shown that the earliest
deadline policy (ED) minimizes the expected value of any increasing convex function of the lag time,

13

where the lag time is defined as the difference between a job's deadline and its actual completion
time. The latest deadline policy (LD) has also been shown to maximize this measure. Finally, we

have been able to establish that the LCFS scheduling policy maximizes the fraction of jobs that
complete by their deadlines among the class of policies that do not use service time or deadline

information. Details of this research may be found in [1].

References

[1] F. Baccelli, Z. Liu, D. Towsley, "Optimal Scheduling of Parallel Processing Systems with
Real-Time Constraints", to appear in J. ACM.

[2] M. Boddy and T. Dean, "Solving Time-Dependent Planning Problems," Proc. Eleventh Int.
Joint Conf. on Artificial Intelligence (IJCAI-89), August 1989, pp. 979-983.

[3] S. Chen, J.A. Stankovic, J.F. Kurose, D. Towsley, "Performance Evaluation of Two New Disk
Scheduling Algorithms for Real-Time Systems", to appear in J. of Real- Time Systems.

[4] S. Chen, D. Towsley, "Performance of a Mirrored Disk in a Real-Time Transaction System",
Proc. 1991 ACM SIGMETRICS Conference, May 1991.

[5] S.-Z. Chen and D. Towsley, "Raid 5 vs. parity stripping: their design and evaluation," to
appear in Journal of Parallel and Distributed Computing, January 1993.

[6] S. Chen, D. Towsley, "A Queueing Analysis of Disk Array Architectures," submitted to IEEE
Trans. on Computers.

[7] S. Chen, D. Towsley, "Scheduling Customers in a Non-Removal Real-Time System with an
Application to Disk Scheduling", submitted to Journal of Real-Time Systems, Aug. 1992.

[8] T. Dean and M. Boddy, "An Analysis of Time-Dependent Planning," Proc. Seventh National
Conf. on Artificial Intelligence (AAAI-88), 1988, pp. 49-54.

[9] K. Decker, V. Lesser, R. Whitehair, "Extending a Blackboard Architecture for Approximate
Processing," The Journal of Real-Time Systems, 2, 1989, pp. 47-49.

[10] P. Goli, J.F. Kurose, D. Towsley, "Approximate Minimum Laxity Scheduling Algorithms for
Real-Time Systems", COINS Technical Report TR-90-88.

[11] J. Hong, X. Tan, D. Towsley, "The Binary Simulation of the Minimum Laxity and the Earliest
Deadline Scheduling Policies for Real-Time Systems", COINS Technical Report 89-70.

[12] J. Hong, X. Tan, D. Towsley, "A Performance Analysis of Minimum Laxity and Earliest
Deadline Scheduling in a Real-Time System," IEEE Transactions on Computers, C-38, 12,
1736-1744, December 1989.

[13] R. H. Katz, G. Gibson, and D. A. Patterson, "Disk System Architectures for High Perfor-
mance Computing," Proc. of the IEEE, Vol.77, No.12, pp.1842-1858, Dec. 1989.

[14] C. M. Krishna and A. D. Singh, "Reliability of Voted-Time-Redundancy Real-Time Systems."
to appear in IEEE Trans. Reliability.

14

[15] C.M. Krishna, A.D. Singh, "Modeling Correlated Transient Failures in Fault-Tolerant Sys-
tems," Proc. Int'l Symposium on Fault-Tolerant Computing, 1989.

[16] C. M. Krishna, "The Impact of Workload on the Reliability of Real-Time Processor Triads,"
to appear in Micro. Rel.

[17] J.F. Kurose, "Performance Analysis of Minimum Laxity Scheduling in Discrete Time Queue-
ing Systems," submitted to Performance Evaluation.

[18] Y.-H. Lee, C.M. Krishna, "Optimal Scheduling of Signature Analysis for VLSI Testing," to
appear in IEEE Trans. Computers.

[19] J. Liu, in "Report on the Embedded AI Languages Workshop, Ann Arbor, MI 1988," R. Volz,
T. Mudge, G. Lindstorm (ed.), University of Michigan, Jan 27, 1990.

[20] P.Nain, D. Towsley, "Properties of the ML(n) policy for scheduling jobs with real-time con-
straints", IEEE Trans. on Computers, 41, 10, pp. 1271-1278, Oct. 1992.

[21] R. Nelson, A.N. Tantawi, D. Towsley, "The Order Statistics of the Sojourn Time s of Cus-
tomers that Form a Single Batch in the MX/Mc Queue", COINS Technical Report 91-05.

[22] R. Nelson, D. Towsley, "A Performance Evaluation of Several Priority Policies for Parallel
Processing Systems", to appear in J. ACM.

[23] A. D. Singh and C. M. Krishna, "On Optimizing Wafer-Probe Testing for Product Quality
Using Die-Yield Prediction," (with A. D. Singh), to appear in IEEE Trans. Computer-Aided
Design.

[24] D. Towsley, S. Chen, "Bounds on the Performance of Two Server Fork/Join Queueing Sys-
tems," submitted to Performance Evaluation.

[25] D. Towsley, J.F. Kurose, "Disk Array Architectures for Real-Time Systems", Proc. Annual
ONR workshop on Real-Time Systems, Oct. 1992.

[26] D. Towsley, S. Panwar, "Optimality of the stochastic earliest deadline policy for the G/M/c
Queue Serving Customers with Deadlines", COINS Technical Report 91-61.

[27] D. Towsley, S. T~ipathi, "A Single Server Priority Queue with Server Failures and Queue
Flushing", Operations Research Letters, July 1991.

[281 N. Vaidya, A.D. Singh, C.M. Krishna, "Allocating Debug Time to Fault-Tolerant Software
Modules," forthcoming ECE Technical Report.

[29] W. Zhao, J. A. Stankovic, "Performance evaluation of FCFS and improved FCFS scheduling
for dynamic real-time computer systems," Proc. Real-Time Systems Symposium, 156-165,
Dec. 1989.

15

Publications - ONR Grant No. N00014-gT-K-0796
Design and Analysis of Scheduling Policies for Real-Time Computer Systems
J.F. Kuorse, C.M. Krishna, D. Towsley

1 Journal Articles:

* J. Hong, X. Tan, D. Towsley. "A Performance Analysis of Minimum Laxity and Earliest
Deadline Scheduling in a Real-Time System", IEEE Transactions on Computers, C-38, 12,
1736-1744, December 1989.

* P. Heidelberger, D. Towsley. "Sensitivity Analysis from Sample Paths Using Likelihoods",
Management Science, 35, 1475-1488, December 1989.

e D. Towsley, G. Rommel, J.A. Stankovic. "Analysis of Fork-Join Program Response Times on
Multiprocessors", IEEE Transactions on Parallel and Distributed Processing, 1, 3, 286-303,
July 1990.

a F. Baccelli, D. Towsley. "Sojourn Times Under Processor Sharing are Associated", Queueing
Systems and their Applications, 7, 269-282, 1990.

* C.M. Krishna, Y.-H. Lee. "A Study of Two-Phase Service", Operations Research Letters, 9,
pp. 91-97, 1990.

* D. Towsley, F. Baccelli. "Comparisons of Service Disciplines in a Tandem Queueing Network
with Real-Time Constraints", Operations Research Letters, 10, 49-55, February 1991.

* S.-Z. Chen, J.A. Stankovic, J.F. Kurose, D. Towsley. "Performance Evaluation of Two New
Disk Scheduling Algorithms for Real-Time Systems", Real Time Systems, 3, 307-336, Septem-
ber 1991.

* Y. Dallery, D. Towsley. "Symmetry Property of the Throughput in Closed Tandem Queueing
Networks with Finite Buffers", Operations Research Letters, 10, 9, 541-547, December 1991.

* D. Sitaram, I. Koren and C. M. Krishna. "A Random, Distributed Algorithm to Embed
Trees in Partially Faulty Processor Arrays", J. Parallel and Distributed Computing, Vol. 12,
pp. 1-11, 1991.

* C. M. Krishna and Y.-H. Lee. "Guest Editors' Introduction: Real-Time Systems", IEEE
Computer, Vol. 24, No. 5, pp. 10-11, 1991.

* Y.-H. Lee, C.M. Krishna. "Optimal Scheduling of Signature Analysis for VLSI Testing",
IEEE Trans. Computers 40, 336-341, March 1991.

* D. Towsley, S. Tripathi. "A Single Server Queue with Server Failures and Queue Flushing",
Operations Research Letters, 10, 353-362, August, 1991.

* Y. Dallery, D. Towsley. "Symmetry Property of the Throughput in Closed Tandem Queueing
Networks with Finite Buffers", Operations Research Letters, 10, 9, 541-547, December 1991.

1

"* P.Nain, D. Towsley. "Comparison of Hybrid Minimum Laxity/First-in-First-Out Scheduling
policies for Real-Time Multiprocessors", IEEE Trans. on Computers, 41, 10, 1271-1278, Oct.
1992.

2 Book Chapters:

" J.F. Kurose, D. Towsley, C.M. Krishna. "Design and Analysis of Processor Scheduling Policies
for Real-Time Systems", chapter in Foundations of Real-Time Computing: Scheduling and

Resource Allocation.

" K.G. Shin and C.M. Krishna. "New Performance Measures for Real-Time Digital Computer
Controls and Their Applications", in Advances in Control and Dynamic Systems, Academic

Press.

" J.A. Stankovic, K. Ramamritham, D. Towsley. "Scheduling in Real-Time Transactiion Sys-
tems", chapter in Foundations of Real-Time Computing: Scheduling and Resource Allocation.

3 Articles in Proceedings:

" S. Chen, D. Towsley. "Performance of a Mirrored Disk in a Real-Time Transaction System",
Proc. 1991 ACM SIGMETRICS Conference, May 1991.

" Q. Yu, D. Towsley, P. Heidelberger. "Time Driven Parallel Simulation of Multistage Intercon-
nection Networks", Proc. Distr. Simulation part of Eastern Mufticonf, Tampa, FL, March
1989, pp. 191-196.

" C.M. Krishna, A.D. Singh. "Modeling Correlated Transient Failures in Fault-Tolerant Sys-
tems", Proc. Int'l Symposium on Fault-Tolerant Computing, 1989.

" P. Goli, P. Heidelberger, D. Towsley, Q. Yu. "Processor Allocation Schemes for Time Driven
Parallel Simulation of Multistage Interconnection Networks", Proceedings of the Distributed
Simulation part of the Eastern Multiconference, 1990.

"* D. Towsley, S.S. Panwar. "On the Optimality of Minimum Laxity and Earliest Deadline
Scheduling for Real-Time Multiprocessors", Proceedings of the Euromicro'90 Workshop on
Real Time, pp. 17-24, June 1990.

"* D. Towsley, S.-Z. Chen, S.P. Yu. "Performance Analysis of A Fault Tolerant Mirrored Disk
System", Proceedings of PERFORMANCE'90, September 1990.

" P.Nain, D. Towsley. "Properties of the ML(n) Policy for Scheduling Jobs with Real-Time
Constraints", Proceedings of 29-th IEEE Conference on Control and Decision,Vol. 2, pp.
915-920, Honolulu, Hawaii, December 1990.

2

4 Journal Articles (to appear):

"* S.-Z. Chen and D. Towsley. "Raid 5 vs. Parity Stripping: Their Design and Evaluation", to
appear in Journal of Parallel and Distributed Computing, January 1993.

"* F. Baccelli, Z. Liu, D. Towsley. "Optimal Scheduling of Parallel Processing Systems with
Real-Time Constraints", to appear in J. ACM.

"* R. Nelson, D. Towsley. "A Performance Evaluation of Several Priority Policies for Parallel
Processing Systems", to appear in J. ACM.

"* C. M. Krishna and A. D. Singh. "Reliability of Voted-Time-Redundancy Real-Time Systems",
to appear in IEEE Trans. Reliability.

"* C. M. Krishna. "The Impact of Workload on the Reliability of Real-Time Processor Triads",
to appear in Micro. Rel.

"* J.F. Kurose. "Performance Analysis of Minimum Laxity Scheduling in Discrete Time Queue-
ing Systems", to appear in Performance Evaluation.

"* A. D. Singh and C. M. Krishna. "On Optimizing Wafer-Probe Testing for Product Quality
Using Die-Yield Prediction", to appear in IEEE Trans. Computer-Aided Design.

"* D. Towsley. "A Study of a Queueing System with Three-Phase Service", to appear in Oper-
ations Research Letters.

"* Y. Dallery, Z. Liu, D. Towsley. "Equivalence, Reversibility, Symmetry and Concavity Prop-
erties in Fork/Join Queueing Networks with Blocking", to appear in Journal of the A CM.

5 Book Chapters (to appear):

"* Y.-H. Lee and C. M. Krishna, editors. Readings in Real-Time Systems, IEEE Computer
Society Press, to appear.

"* C. M. Krishna. "Architectural Aspects of Real-Time Systems", Encyclopedia of Computer

Science and Technology, to appear.

6 Articles in Conference Proceedings (to appear):

"* J. Dey, J.F. Kurose, D. Towsley, C.M. Krishna, M. Girkar. "Efficient On-line Processor
Scheduling for a Class of IRIS (Increasing Reward with Increasing Service) Real-Time Tasks",

to appear in Proc. of 1993 ACM SIGMETRICS Conf.

3

7 Technical Reports:

" S. Chen, J.A. Stankovic, J. Kurose, D. Towsley. "Perf. Eval. of Two New Disk Scheduliig
Algorithms for Real-Time Systems", COINS TR90-77.

" S. Chen, D. Towsley. "Perf. of a Mirrored Disk in a Real-Time Transaction System", COINS
TR91-07.

"* S. Chen, D. Towsley. "A Queueing Analysis of RAID Architectures", COINS TR91-71.

"* S. Chen, D. Towsley. "RAID 5 vs. parity Striping: Their Design and Evaluation", COINS
TR92-13.

" S.Chen, D. Towsley. "Scheduling Customers in a Non-Removal Real-Time System with an
Application to Disk Scheduling", COINS TR92-58.

"*S. Chen, D. Towsley. "A Perf. Eval. of RAID Architectures", (Replaces TR91-71), COINS

TR92-67.

" Y. Dallery, Z. Liu, D. Towsley. "Equivalence, Reversibility and Symmetry Properties in

Fork/Join Queueing Networks with Blocking", COINS TR90-78.

"* Y. Dallery, Z. Liu, D. Towsley. "Properties of Fork/Join Networks with Blocking under

Virious Operating Mechanisms", COINS TR92-39.

"* Y. Dallery, D. Towsley. "Symmetry Property of the Throughput in Closed Tandem Queueing
Networks with Finite Buffers", COINS TR90-40.

"* P. Goli, J. Kurose, D. Towsley. "Approximate Minimum Laxity Scheduling Algorithms for
Real-Time Systems", COINS TR90-88.

"* J. Hong, X. Tan, D.Towsley. "The Binary Simulation of the Minimum Laxity and Earliest
Deadline Scheduling Policies for Real Time Systems", COINS TR89-70.

"• J. Hong, X. Tan, D. Towsley. "A Performance Analysis of Minimum Laxity and Earliest
Deadline Scheduling in a Real-Time System", COINS TR89-71.

"* R. Nelson, A. Tantawi, D. Towsley. "The Order Statistics of the Sojourn Times of Customers
that Form a Single Batch in the Mx/M/c Queue", COINS TR 91-05.

"* R. Nelson, D. Towsley. "A performance Evaluation of Several Priority Policies for Parallel
Processing Systems", COINS TR91-32.

"* D. Towsley, S. Chen, S.P. Yu. "Performance Analysis of a Fault Tolerant Mirrored Disk
System", COINS TR91-04.

"* D. Towsley, S. Panwar. "Comparison of Service and Buffer Overflow Policies for Mult. Server
Queues that Serve Customers with Deadlines", COINS TR89-72.

" D. Towsley, S. Panwar. "Optimality of the Stochastic Earliest Deadline Policy for the G/M/c
Queue Serving Customers with Deadlines", COINS TR91-61.

4

